当前位置: 迅达文档网 > 党团工作 >

反比例函数教学设计

| 来源:网友投稿

课题 17.4 反比例函数教学设计

教材分析

在学反比例函数前已经学过正比例函数和一次函数,九下学习二次函数,教材的编写意图是由简单到复杂,先直线再曲线。因此学好反比例函数对以后学习二次函数有很大的帮助。另一方面一次函数与反比例函数、二次函数有着非常紧密的联系,所以在复习反比例函数时把一次函数与它进行对比更有利于学好函数的有关知识。

学情分析

学生对于数学的学习兴趣比较浓厚,课堂上能积极发言,思考,交流互动,形成了互助合作的好习惯.在本节课学习之前,学生已较好地掌握了正比例函数和一次函相关内容,因此本节的学习中,师适当地引导之后.可放心地让生合作交流,自主探索.在练习的设置中可由浅入深,适当地提高,让生动脑思考,交流探讨充分地参与到学习中来.教学目标

1、通过具体的情境、让学生经历由实例领会函数和反比例函数概念的过程,从而进一步体会反比例函数的意义。

2、观察、比较、加深对反比例函数的图象和性质的理解,建立函数知识体系。

3、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。

教学重点

反比例函数的图像和性质在实际问题中的运用

教学难点

难点是反比例函数性质的应用。

教学方法

鉴于教材特点及学生的年龄特点、心理特征和认知水平,采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。

通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——自主——交流——总结

的学习活动过程,同时在教学中,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

学法指导

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

教学过程

一.知识回顾 :

让学生小组交流总结反比例函数的相关知识, 形成知识网络,做到心中有数,学以致用。

二.自主完成:

十个问题的设计考查反比例函数的定义及解析式的不同形式,反比例函数图象的位置、增减性,重点是巩固基础知识和一般的解题方法。利用所学知识,解决问题,学生先自主完成,然后通过学生代表精讲加深理解,。

第2,5,9, 10小题易错处必要时教师精讲。第5题强调 “必须限定在每一个象限内”,设计的主要目的是平时在作业中错误率也较高,再次讲解以加深理解和记忆。

三.议一议(合作交流)

九个小组组内交流这三个问题的学习成果,达成共识后举手示意老师本组交流完毕。

组间交流学习成果,此时边分析边讲解,讲解时学生不仅要说出结论,更要说出思维过程(说做法、说思路、说规律、说关键点),教师要观察和帮助学困生或组。

教师指定三个组学生讲解,及时鼓励学生总结补充。

四.能力提升

第1题是对待定系数法求函数关系式的考查

充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.一学生板演解题过程。注重规范书写.第2题是对反比例函数,一次函数与方程,面积的综合考查。

学生代表分析引导,激发学生的求知欲,关注“学困生”;
请两名学生上台分析.关注学生的思维。

五.当堂检测:

反馈学生掌握情况。

六.课堂小结

通过这节课的学习,你有什么收获?

本节复习课主要复习反比例函数的概念、图像、性质、应用等内容,夯实基础提高应用。

七、作业

能力提升第2题过程,课本64页习题17.5第5题

板书设计

17.4 反比例函数

1.定义

2.确定表达式 3.图象 4.性质

评价设计

本节课采用的评价方法主要有:观察、抽问,和练习抽查等。教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;
通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极、跟进;
课堂练习、答问的正确程度;
练习的正确率等。根据学生的情况及时调整教学内容和过程,以较好地实现教学目标

17.1.2 反比例函数的图象和性质(2)教学设计 学习课题:17.1.2 反比例函数的图象和性质(2)

学习内容:教材P44-45 学习目标:

1、能用待定系数法求反比例函数的解析式.

2、能用反比例函数的定义和性质解决实际问题.

学习重点:反比例函数图象性质的应用.

学习难点:反比例函数图象图象特征的分析及应用。

学习准备:

1、如何画反比例函数图象。

2、反比例函数有哪些性质。

学习过程:

一、探究研讨: 【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=

?的图象上,x•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.

【活动2】已知反比例函数的图象经过点A(2,6)

(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?

(2)点B(3,4)、C(-

214,-4)和D(2,5)是否在这个函数的图象上? 2

5【活动3】如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题: (1) 图象的另分布在哪些象限?常数m的取值范围是什么?

(2) 在函数的图象的某一支上任取点A(a,b)和点B(,b′)。如果a﹥a′,那么

b和b′有怎样的大小关系?

二、巩固练习:

1、P45-

1、2

2、判断下列说法是否正确

(1)反比例函数图象的每个分支只能无限接近x轴和y轴,•但永远也不可能到达x 轴或y轴.(

) 3中,由于3>0,所以y一定随x的增大而减小.(

) x

2(3)已知点A(-3,a)、B(-2,b)、C(4,c)均在y=-的图象上,则a

x

(2)在y=

(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).(

3、设反比例函数y=

3m的图象上有两点A(x1,y1)和B(x2,y2),且当x1

,在图象的每一支上,y随x•xk的图象有一个交点的纵坐标是2,求(1)x时,有y1

4、点(1,3)在反比例函数y=的增大而

5、正比例函数y=x的图象与反比例函数y=x=-3时反比例函数y的值;
(2)当-3

三、提升能力:

1、三个反比例函数(1)y=

kk1k

(2)y=

2(3)y=3 在x轴上方的图象如图所示,由此xxx推出k1,k2,k3的大小关系

2、直线y=kx与反比例函数y=-求S△ABC.

3、已知函数y=-kx(k≠0)和y=-足为C,则S△BOC=_________.

6的图象相交于点A、B,过点A作AC垂直于y轴于点C,x4的图象交于A、B两点,过点A作AC垂直于y轴,垂x

4、已知正比例函数y=kx和反比例函数y=析式及另一交点的坐标.

3的图象都过点A(m,1),求此正比例函数解x

5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点A、B,与双曲线y2=分别交于点C、D,且C点坐标为(-1,2).

(1)分别求直线AB与双曲线的解析式;

(2)求出点D的坐标;

(3)利用图象直接写出当x在什么范围内取何值时,y1>y2.

四、反思归纳

k(k

1、本节课学习的内容:

反比例函数的性质及运用

(1)k的符号决定图象_________.

(2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质.

(3)从反比例函数y=

k的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点x所构成的三角形面积S△=_________.

(4)性质与图象在涉及点的坐标,确定解析式方面的运用

2、数学思想方法归纳:

《反比例函数》的教学设计

一、教学目标 (一)知识与技能

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似 关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.3.探索现实生活中数量间的反比例关系,能判断一个给定的函数是否为反比例函数.(二)过程与方法

1结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感与价值观要求

1.从现实情境和已有知识经验出发研究两个变量之间的相互关系,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观 点。体验数学来源于生活实际,激发学生学习数学的热情和兴趣。

2.结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

二、教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

三、教学难点

领会反比例函数的意义,理解反比例函数的概念.

四、教学方法:

利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。

教具准备 投影片两张 第一张:(记作A) 第二张:(记作B)

五、教学过程

(一)知识链接:

函数、一次函数和正比例函数定义、性质等。

(二).创设问题情境,引入新课

1、我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1600km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1600,则t和v之间的关系是什么呢?肯定不是正比例函数和一次函数的关系,那么它们之间 的关系究竟是什么关系呢?这就是本节课我们要揭开的奥秘.

2、新课讲解

(1)反比例函数定义。

投影片:(A) 京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? ①你能用含有t的代数式表示v吗? ②当 t分别为 20, 40, 60, 80, 100时,v分别为多大? 当t越来越大时,v怎样变化?当t越来越小呢? ③变量t是v的函数吗?为什么? 师生讨论后给出:
一般地,如果两个变量x、y之间的关系可以表示成 (k为常数,k≠0)的形式,那么称y是x的反比例函数.从 中可知x作为分母,所以x不能为零.(2).做一做 投影片(B) ①.一个矩形的面积为200平方厘米,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数 3.课堂练习 随堂练习(P131) 4.活动与探究

已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=

1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y是x的一次函数.六.课时小结

本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.七.课后作业 习题5.1 八.板书设计 板书设计:
反比例函数

1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x (k为常数,K≠0)的形式,那么称y是x的反比例函数。

2、注意:
①常数K≠0;

②自变量x不能为零(因为分母为0时,该分式没意义);

③当 y=k/x 可写为乘积的形式 时注意x的指数为—1。

④确定了k,这个函数就确定了。

教学反思:
在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象概念比赛中,许多学生能积极指出其他同学的优缺点,并且不断发现不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们语言表达的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。

在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。

在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;
还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;
另外课堂中指教者的示范作用体现的不是很好,,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。

综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;
在今后的教学中要严格要求自己,方方面面进行改善!

一、教学设计应符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。

17.4《反比例函数》第一课时教学设计

甘谷县西关中学

课题名称:初中数学《反比例函数》第一课时 执教年级:八年级(2)班 教学目标:
知识与技能:

1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;

2.能判断一个给定的函数是否为反比例函数。

过程与方法:

通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。

情感、态度与价值观:

经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。

教学重点、难点设计:

对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。

教学准备与方法设计:

通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。

学生知识状况分析

由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.教学过程

一:创设问题情境,引入新课

活动目的

给学生设置疑问,激发学生学习兴趣。

活动过程

我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt=1200,则t=1200中,

vt和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.二:新课讲解

活动目的 在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。

活动过程

1,引入我们今天要学习的是反比例函数,

2.探究归纳

经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.问题1 从A地到B地的路程为1200 km,某人开车要从A地到B地,求汽车的速度v(km/h)和时间t(h)之间的关系式。

从这个关系式中发现: 1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;
速度减小了,时间增大.

2.自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式. 分析 根据矩形面积可知

xy=24, 即 y24 x从这个关系中发现:

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;
若一边减小了,则另一边增大;

2.自变量的取值是x>0.

上述几个函数都具有y比例函数

kk的形式,一般地,形如y(k是常数,k≠0)的函数叫做反xx说明 1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即且k≠0;
反比例函数y足哪一种比例关系.

2.反比例函数的解析式又可以写成:yyk,k是常数,xk,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满xkkx1( k是常数,k≠0). x3.要求出反比例函数的解析式,只要求出k即可.

三.互动平台

(1)每人写三个反比例函数,请同桌指出其中k的值.(2)小组讨论:举出实际生活学习中具有反比例关系的例子。

四、做一做 多媒体课件演示

1 下列函数关系中,哪些是反比例函数?

2x (2) y

x

31(3)xy5 (4) y

x21(5)yx4 (6) yx (1)y

2、写出下列函数关系式,并指出它们是什么函数? (1)三角形的面积S是常数时,它的底边长y和这条底上的高x的函数关系; (2)食堂存煤15吨,可使用的天数t和平均每天的用煤 量Q(千克)的函数关系.(3).某厂现在年产值是150万元,计划今后每年增加10万元,请写出年产值y(万元)与年数x之间的关系.

五、交流反思

1.本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如yk(k是常数,xk≠0)的函数叫做反比例函数

2.反比例函数的几种常见形式 k(k为常数,k≠0) x1形式2:ykx(k为常数,k≠0) 形式3:xyk(k为常数,k≠0) 形式1:y六、拓展延伸

多媒体课件演示

教案主要创新点自评

本节教案旨在实行启发式教学,主要以学生的自主探究为主,教师以问题的形式形成主导作用。重视基础知识与基本技能、过程与方法、情感态度和价值观等课程目标的全面落实,注重数学思想方法的渗透。

《反比例函数》教学设计

登封市嵩阳中学 九年级教学组

反比例函数复习课教学设计

复习内容:反比例函数的形式、性质、应用。

复习目标:

1、了解并掌握反比例函数的定义;

2、掌握反比例函数的性质,会用它们解决实际问题;

3、会用反比例函数的性质解决综合问题。

复习重点:反比例函数的定义及性质。

复习难点:反比例函数的综合应用。

复习过程:

(一) 创设情境,引入课题

反比例函数是初中学习的三种重要函数之一,是中考的必考内容,约占分值3到12分,为了更好的掌握及应用,本节课就反比例函数的三个考点进行复习。

(二)考点1 反比例函数的定义及三种形式 (1)一般的,函数_________叫做反比例函数。

(2)反比例函数的三种形式有:①________; ②_________; ③________.

(三)考点随堂练

1、下面关系的两个量,是反比例关系的是

) A、速度一定时,路程与时间;

B、压力一定时,受力面积与压强;

C、读一本书,已读的页数与剩下的页数;

D、某人的年龄与体重。

2、下列函数中,是反比例函数的是

52(1)y2x1;(2)y;(3)yx8x2;x31a(4)y2;(5)y;(6)yx2xx

3.某厂有煤1500吨,求得这些煤能用的天数y与每天用煤的吨

数x之间的函数关系式为__________.

24.当是反比例函数? m取什么值时,函数y=(m-2)x3-m 2 反比例函数的图象与性质

(四)考点(1) 反比例函数的图像是________,

所以我们把反比例函数也叫做________.(2) 反比例函数

当k>0时,图像在________象限, 在每个象限内,函数y随x______________________; 反比例函数当k

(4)反比例函数图像上任意一点向两坐标轴作垂 线,与坐标轴围成的矩形面积等于_________.考点随堂练

2k-15.[2011·黄石] 若双曲线y=的图象经过第

二、四象限,则x

k的取值范围是( ) 111 A.k> B.k< C.k= D.不存在 222

-1 6.[2011·怀化]函数y=2x与函数y=在同一坐标系中的大致图x象是 ( )

17.[2010·孝感]如图14-3,点A在双曲线y=上,点B在双曲线y图14-1 x=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它3x的面积为________.

图14-3

一次函数与反比例函数的图象交于点P(-2,1)和Q(1,m).8.(1)求反比例函数的关系式;

求Q点的坐标;

(2)(3) 在同一直角坐标系中画出这两个函数图象的示意图,观察图象并回答:当x为何值时,一次函数的值大于反比例函数的值? 考点3 反比例函数的应用

(五)考点随堂练

9.某闭合电路中,电源电压为定值,电流I(A)与电阻R( Ω)成反比例,该电路中电流I与电阻R之间函数关系的图象如图14-4所示,则用电阻R表示电流I的函 数解析式为( ) 66A.I= B.I=- 32C.I= D.I=

图14-4

RRRR

10.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨, 人口数为x,则y与x之间的函数关系式的大致图象应为( )

图14-5

11 .[2011·南京]设函数y=2x与y=x-1的图象的交点坐标为(a ,b),则11a-b的值为__________.

12m-5 .[2011·襄阳] 已知直线y=-3x与双曲线y=x交于点P(-1,n). (1) 求m的值;

(2) 若点A(x1,yy=m-51),B(x2,y2)在双曲线x上,且x1

(六)课堂小结

本节课我们复习了反比例函数的三个考点,请同学们回忆和总结一下,掌握了哪些内容?还有哪些疑惑的地方?

(七)课堂检测

1、已知点 P(-1,4)在反比例函数y=kx(k≠0)的图象上,则k的值是( A.-14 B.14 C.4 D.-4 )

72、已知反比例函数y=-图象上三个点的坐标分别是A(-2,y1)、x

B(- 1,y2)、C(2,y3),能正确反映y

1、y

2、y3的大小关系的是( ) A.y 1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y2>y3>y1

3、如图14-3,已知A(4,a),B(-2,-4)是一次函数y=kx+b的图象和 m 反比例函数y=的图象的交点. x

(1)求反比例函数和一次函数的解析式;

(2)求△AOB的面积.

课外延伸

图14-

1k如图14-4,正比例函数y=x的图象与反比例函数y=(k≠0)在 2x

第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;

(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合), 且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.

《正比例函数》教学反思

第17章《反比例函数》好题集(03):171_反比例函数

第17章《反比例函数》好题集(10):171_反比例函数

第30章《反比例函数》常考题集(01):301_反比例函数

第17章《反比例函数》常考题集(06):171_反比例函数

推荐访问:反比例 教学设计 函数

热门排行

党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件14篇

党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件14篇党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件篇1我

2022年五星支部创建实施方案5篇

2022年五星支部创建实施方案5篇2022年五星支部创建实施方案篇1为切实提高支部党建工作科学化水平、不断夯实党建基础,挖掘支部党建特色,创新支部党建工作做

七言绝句古诗精选【十首】

【 能力训练 导语】七言绝句是中国传统诗歌的一种体裁,简称七绝,属于近体诗范畴。此体全诗四句,每句七

2022年支部党员大会记录内容14篇

2022年支部党员大会记录内容14篇2022年支部党员大会记录内容篇120xx年度我校新党员发展工作已经开始。根据学校党委3月21日会议精神,今年新党员发展

统计工作如何为企业管理服务

作为企业管理重要组成部分的统计工作,在企业的经济运行中发挥着信息、咨询和监督三大作用,它为企业的经营

乡镇创建无毒社区工作方案

一、指导思想以“三个代表”重要思想为指导,认真贯彻落实上级精神,以禁吸戒毒为中心,全面落实禁毒工作责

四年级我家菜园日记500字

菜园子,就是种菜的地方。种菜的时候为了防止家禽进入菜地,于是农夫用篱笆或者栅栏将菜地围起来形成的一个

哈尔移动城堡电影观后有感范本

在观看完一部作品以后,相信你会有不少感想吧,这时我们很有必要写一篇观后感了。可能你现在毫无头绪吧,下

党支部2022年学习计划14篇

党支部2022年学习计划14篇党支部2022年学习计划篇1认真坚持“三会一课”制度,对于加强支部建设,提高党的战斗力、健全党的生活,严格党员管理,充分发挥党