当前位置: 迅达文档网 > 党团工作 >

湖泊富营养化数学模型研究进展(周婕,曾诚)

| 来源:网友投稿
 

摘要: 随着经济发展,水污染日益加剧,水体污染最突出的问题是富营养化。联合国环境规划署(UNEP)的一项调查表明,全球范围内30%~40%的湖泊和水库都有不同程度富营养化。湖泊富营养化通常呈现发展快、危害大、治理难、修复历时长等特点,而数学模型可以综合反映系统特征,因此建模是湖泊管理中特别有用的手段。综述了国内外湖泊富营养化数学模型的研究进展情况。将模型按照从简单到复杂分为4种类型分别进行评述,概述了各类模型的发展情况、优缺点及发展趋势。最后指出湖泊富营养化数学模型的发展趋势。

 

关 键 词: 湖泊;富营养化;模型;研究进展;发展趋势

 

中图分类号: X524 文献标识码: A

 

1 富营养化模型研究进展

 

1.1 经验回归模型

 

经验回归模型是在多年实测水质浓度资料及相关环境资料如生物数据的基础上,进行多元回归分析建立起的经验模型。大多描述叶绿素a与磷和透明度之间的关系[1] ,也可预测浮游植物生物量、藻类平均或最大生物量等等。模型建模时通常需要大量数据,而这些数据的精度往往很难保证,加之建模时考虑因素过于简单,模型的准确性、灵敏性、可靠性都不太好,通常只在数据不太理想或建立复杂模型前用作初步的半定量估计。另外,模型往往对特定预测有效,即针对不同的TP浓度范围、决定系数要求及相关系数要求有不同的公式[2] 。经验模型虽然结果不是很准确,局限性较多,但也有其优点:可以提供水质变化的趋势;可以快速评价湖泊水质;为不熟悉数学模型的规划人员和决策者提供了定量工具[3] 等等。因此,这种模型目前在参数验证、水质评价或预测等方面应用仍较多。由于经验模型往往是静态的,不能反映季节变换的影响,近年来有模型使用浮游植物容量(藻类容量,AV)作为目标变量,建立TP(生长季节的数值)和AV的关系,旨在消除经验模型难以反映生长季节情况的缺陷。Jan-Tai Kuo等人用B-P人工神经网络对DO、TP、Chl-a、SD分别建立了非线性关系,大大提高了对水质因子预测的准确性。

 

1.2 营养盐模型

 

引起富营养化的营养物质主要是碳、氮、磷,一般淡水环境中碳、氮、磷的比率为106∶16∶1。根据Liebig最小生长律,氮、磷是富营养化的限制元素,而在淡水环境中,磷又是影响初级生产力的最主要因素,所以定量的负荷方法和模型大多涉及磷。

 

1968年,加拿大著名湖沼学家沃伦韦德(Vollenweider)首次用公式定量描述了水中磷、氮及要求的营养状况的负荷准则(营养物负荷概念)[4] ,建立了反映夏季蓝绿藻和磷负荷之间关系的模型。1975年,他又提出用磷来预测水体营养状况的模型,即Vollenweider模型。该模型假定水体混合均匀、限制性营养盐单一,其公式简单,所需数据少,适合对湖泊及水库的营养盐变化进行长期预测或对水体营养状况进行总体评价。Vollenweider模型在美国和加拿大的一些湖泊进行过率定,是世界上应用最广泛的富营养化模型之一。此后,各国研究人员对该模型进行修正,提出不同的模型,如1974年的Ditoro模型,1983年的Orlob模型,以及Laesen-Mercier模型等等[5] 。

 

DONG-IL SEO和RAYMOND P.CANALE[6] 以Shagawa湖为研究对象,详细比较了几种表现形式和可靠性不同的总磷模型。各种模型中,有基于经验的,也有根据守恒原理的;有单独考虑总磷浓度的,也有将总磷分为溶解态和颗粒态的;有的模型将水体视为均匀混合,有的则将水体分为两层甚至更多层。模型的时间尺度也各不相同,有的仅针对生长季节,有的则计算1a或更长时间。有的模型还考虑了沉积物的影响。研究表明,湖泊中的底泥是湖泊水体中营养盐主要来源之一。在浅水湖泊的磷总量平衡中,底泥磷占整个内负荷的60%~80%[7] ,而影响底泥磷释放的因素众多,因此,模拟底泥和水体界面的营养盐(主要是磷)交换是营养盐模型研究不可忽视的重要方面,但同时也极为复杂。近年来,富营养化模型发展迅速,不少底泥模型相继出现。

 

早期磷模型虽然简单,但存在不少缺点:模型只能求解总磷的平均浓度分布,不能模拟各种形态磷在水中的循环过程;模型假定水体混合均匀,无法反映污水入湖后,总磷浓度分布的时空差异;模型未考虑沉淀物与水体的磷交换过程,等等。虽然单一营养物质模型考虑因素简单,预测不是十分准确,但在预测评价、模型校正等方面应用广泛。

 

近年来,营养盐模型,在很大程度上克服了以上缺陷,有很大发展:从单一的总磷浓度发展到模拟水体中整个磷系统(包括颗粒磷、溶解无机磷和浮游生物中的磷,等等)的循环;从单纯考虑水体本身的营养盐循环发展到考虑底泥和水体界面的营养盐交换过程;从简单的水体完全混合模型发展到多层模型等。如:预测磷浓度的LEEDS(Lake Eutrophication,Effect,Dose,Sensitivity)模型[8] ,其参数获取简单,用于实际湖泊效果良好,因此应用广泛。

 

1.3 浮游植物动力学模型

 

浮游植物动力学研究在物理过程驱动下,浮游植物自身的生产与代谢、营养盐循环与补充和浮游动物捕食作用下的浮游植物生物量的时空分布规律及控制因子。

 

丹麦著名生态学家J¢rgensen(1983年)指出浮游藻类的生长是富营养化的关键过程,研究氮、磷负荷与浮游藻类生产力的相互作用和关系是揭示湖泊富营养化形成机理的主要途径。氮、磷等营养盐对浮游植物生长的影响可分两种:一种是将生长描述为细胞外部营养盐浓度的函数;另一种则是作为细胞内部营养盐的函数。J¢prgensen提出的两阶段生长理论替代了经典的Monod生长理论,较好地解释了藻类在营养盐过剩时的吸收情况。Droop[9] 假设:外部营养盐浓度决定了藻类对于营养盐的吸收能力;藻类的生长由内部营养盐浓度决定;稳定状态下,营养盐吸收必须等同于生物量生长率和内部营养盐浓度,在此基础上于1973年提出了基于内部营养盐的生长函数。DiToro[10] 比较了内部和外部营养盐浓度分别对浮游植物生长的影响,基于实际研究对象,他发现由两种函数算得的藻类生长率几乎没有差别。此后的研究者考虑细胞内部营养盐影响的并不多。Carl F.Cerco[11] 在研究磷吸收对于藻类生长影响时再次考虑了内部营养盐的影响,构建出了适合空间和时间要求的新的富营养化模型。藻类吸收营养物质才能生长,吸收量可由Michaelis-Menten方程确定。但该方程不能解释营养物质丰富时过剩的吸收。Lehman[12] 和J¢rgensen分别提出了一个新的公式,将藻类增长分成两个阶段:首先吸收营养物作为细胞内的营养质,然后藻类消耗内部营养物质生长、呼吸、死亡。Lehman首次利用Droop营养盐限制变量和营养盐增加(multiple)限制建立了生态系统模型,根据营养盐增加限制计算藻类生长。模型符合Baule""s原理[13] ,但违背了Liebig最小值定律。De Groot[14]指出营养盐限制模型的预测结果和实测数据不符。T.Legovic和A.Cruzado[15] 认为藻类生长受多种营养盐影响,在Michaelis-Menten-Monod方程、浮游植物生长的Droop函数和Liebig最小值定律基础上建立了浮游植物生长模型,针对浮游植物稳定存在状态加以讨论。在限制性营养盐含量相同情况下,根据模型找到了限制性营养盐(由Redfield比率表述)。

 

在具体方程形式上,仅仅描述浮游植物随时间变化的常微分方程模型仍被广泛应用,这些模型能够处理数据并进行分析,但描述实际空间现象如沉降、光透射、水流和紊动时就显得无能为力了。而使用偏微分方程就可以描述浮游植物生物量是如何受空间和时间影响而发生变化的。

 

Vincenzo Botte[16] 耦合N-P-Z浮游生物模型,基于偏微分方程,采用有限元方法求解二维N-S方程,预测了春季温度回暖和温度梯度对浮游植物生态系统的影响。Jingjie Zhang,Sven Erik J¢rgensen[17] 等人根据限制性营养盐磷建立了结构动力学模型,针对沉水植物生长旺盛的湖泊进行了模拟,将exergy作为目标函数考虑了动态适应性和多种季节性浮游生物,该模型很好地描述了浮游植物和沉水植物之间的竞争性。Olli Malve[18] 等人建立的非线性动力模型描述了3种优势藻类的演替,采用蒙特卡洛方法进行参数估计,提供了一种处理紊乱数据和大量难以确定的参数的方法,模型与8a的现场观测数据相符。总体看,很少有生态动力学模型可以将浮游植物生物量增加有关的所有因子和过程考虑在内,也没有哪个模型包含了生产力、扑食影响、自身生长、衰减、食物选择情况等所有生态系统特征,有些因素很基本,如光区深度、掠夺行为和季节变换等,但很难量化地体现在模型中,也没有哪个模型使用很少的驱动变量就能获得很好的预测效果,并能应用于所有湖泊。所有模型都不同程度的存在缺陷和不足。模型确定往往受制于研究问题的时空尺度,同时也取决于对特定研究湖泊的参数的研究,研究目的不同,浮游植物动力学模型的复杂性和时空尺度也不同。大量模型经特定湖泊验证给定了系数和模型变量,但只能较好描述一些湖泊,对有些湖泊并不适用。尽管每一种模型都只表征了浮游植物动力学的某些特征,但基本上都包含了浮游植物—营养盐方程,并耦合相应的水动力模型,有些则包含了更高营养层次的作用,这种方法仍是湖泊学中的主要模拟手段。

 

1.4 生态系统动力学模型

 

不从系统角度考查湖泊,湖泊生态系统恢复措施不可能达到很好的预期效果,甚至会导致更坏结果的出现。因此,要更全面、清楚地了解湖泊系统本身的行为,建立生态系统模型是必然趋势。湖泊生态系统动力学的研究对象是湖泊的生态结构、功能、时空演变规律及其物理、化学、生物过程对水生生态系统的影响及其反馈机制,并且预测系统的动态变化。系统分析方法是模拟的基础,将其用在湖泊生态系统研究始于Chen[19] 和Orlob,他们的研究奠定了对生态系统动力学模拟的基础。Arnold[20] 研究了生态系统研究及管理中的系统分析方法,Jeffers[21] 对系统分析在生态学上的应用进行了总结。此外,系统动力学(system dynamics)理论也是研究和描述系统动态的有力工具,其主要研究内容是通过建立数学模型,分析一个动力系统长时间所表现出来的动力学行为。

 

完整的湖泊生态模型研究开始于20世纪70年代,经历了从简单到复杂、从零维到三维的过程。在湖泊富营养化研究过程中,J¢rgensen[22] 于1976年最早提出浅水湖泊生态模型,该模型被广泛应用于热带、温带地区不同类型的浅水湖泊、水库和海湾的研究。但由于生态系统动力学模型是对系统的描述,涉及众多变量,参数率定往往以特定湖泊为对象确定,因此已存在的模型大多是针对特定湖泊建立起来的。如,北美的五大湖、华盛顿湖、欧洲的巴拉顿湖、日本的琵琶湖和霞浦湖等,都有相应的生态模型,而且在研究和应用方面都比较成功。

 

中国的湖泊生态系统动力学模型研究始于20世纪80年代,主要集中在滇池、太湖、东湖、巢湖、西湖等富营养化严重的湖泊以及其他水体。

 

目前,已有一些软件用于湖泊生态系统动力学模拟,有CE-QUAL-ICM、WASP、AQUATOX、Pamolare

推荐访问:富营养化 研究进展 湖泊 数学模型 曾诚

热门排行

党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件14篇

党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件14篇党委党组落实全面从严治党主体责任规定指出本地区本单位发生重大违纪违法案件篇1我

2022年五星支部创建实施方案5篇

2022年五星支部创建实施方案5篇2022年五星支部创建实施方案篇1为切实提高支部党建工作科学化水平、不断夯实党建基础,挖掘支部党建特色,创新支部党建工作做

七言绝句古诗精选【十首】

【 能力训练 导语】七言绝句是中国传统诗歌的一种体裁,简称七绝,属于近体诗范畴。此体全诗四句,每句七

2022年支部党员大会记录内容14篇

2022年支部党员大会记录内容14篇2022年支部党员大会记录内容篇120xx年度我校新党员发展工作已经开始。根据学校党委3月21日会议精神,今年新党员发展

统计工作如何为企业管理服务

作为企业管理重要组成部分的统计工作,在企业的经济运行中发挥着信息、咨询和监督三大作用,它为企业的经营

乡镇创建无毒社区工作方案

一、指导思想以“三个代表”重要思想为指导,认真贯彻落实上级精神,以禁吸戒毒为中心,全面落实禁毒工作责

四年级我家菜园日记500字

菜园子,就是种菜的地方。种菜的时候为了防止家禽进入菜地,于是农夫用篱笆或者栅栏将菜地围起来形成的一个

哈尔移动城堡电影观后有感范本

在观看完一部作品以后,相信你会有不少感想吧,这时我们很有必要写一篇观后感了。可能你现在毫无头绪吧,下

党支部2022年学习计划14篇

党支部2022年学习计划14篇党支部2022年学习计划篇1认真坚持“三会一课”制度,对于加强支部建设,提高党的战斗力、健全党的生活,严格党员管理,充分发挥党