超声波医生工作总结
超声波检测专业技术总结
本人于2012年毕业于南昌航空工业学院无损检测专业,从事无损检测工作有12年了,本人第一次参加的工作单位是一家军工企业,在日常工作中涉及到锻件、焊缝和非金属复合材料的无损检测;
2008年本人受聘于一家第三方检验公司,从事第三方无损检测工作,主要检测的对象是板材、板材、管材等原材料、大型机械设备的锻件、铸件及焊缝以及压力容器及钢结构的焊缝;
在工作过程中本人努力提高检测能力,认真对待检测工作,严格把控产品质量,在从事无损检测工作期间未出现过质量事故。
参加无损检测工作以来,我时刻不忘加强自身的学习,以不断提高自己的专业知识和业务水平,在实践中遇到疑难问题,喜欢刨根问底,查相关资料,从理论知识入手,向老师傅请教,探究问题根源,实践经验也有了一定的积累,现就我个人在超声波探伤中的一些心得体会总结了一下,向各位老师进行汇报。
在超声波检测中我们所关心的有三大关键问题即缺陷的定位、定量和定性。到目前为止,超声波检测的教科书就缺陷的定位、定量做了比较详细的描述,广大的超声检测技术人员已作了大量实验研究工作,在对缺陷的定位和定量评定方面做了很多这方面的论述。然而,在对缺陷定性评定方面却存在相当大的困难,
本人在实践过程遇到过各种缺陷,就检验中遇到的各种主要缺陷的波形特征谈谈自己的心得体会,具体分析如下:
铸钢件中缺陷的波形分析
铸件探伤常用脉冲多次底波法,工件中无缺陷时出现底波次数多,各底波的间隔大致相等,当工件中有疏松等缺陷时,由于散射原因使反射声能减少,底波反射次数减少,若工件中有严重的大面积缺陷,底波消失,只有杂波存在。
气孔缺陷:有单个、密集和链状等气孔,表面一般比较光滑,
所以气孔的波形的特征是反射幅值较高,波形比较陡,波峰单一,敏感性强,根部清晰,对底波影响不大。单个气孔为比较稳定的单脉冲波,链状缺陷会发生连续不断的缺陷波,密集气孔为数个缺陷波。使用不同角度的探头都可检测的铸件气孔缺陷。
铸件中的夹渣缺陷:夹渣缺陷有棱角,回波相对弱,对不同方位的超声波反射幅值变化明显。
铸件中的缩孔缺陷:一般波形幅度高而且集中,在主波周围还有枝状波,底波衰减严重,改变探伤方向,底波基本无变化。
铸件中的疏松缺陷:疏松对超声波有明显的吸收和散射作用,一般没有底波,只有杂乱无章的缺陷波,呈草丛状,移动探头反射波有时会此起彼伏,当量不大而且密集,改变探伤方向时,有时会出现幅度很低的底波,处于草丛波中间。
以杂波、丛状波形式或底波高度损失增大、底波反射次数减少等形式出现。
(2)棒材的中心裂纹:在沿圆周面作360°径向纵波扫查时,由于裂纹的辐射方向性,其反射波幅有高低变化并有不同程度的游动,在沿轴向扫查时,反射波幅度和位置变化不大并显示有一定的延伸长度。
(3)锻件中的裂纹:由于裂纹型缺陷内含物多有气体存在,与基体材料声阻抗差异较大,超声反射率高,缺陷有一定延伸长度,起波速度快,回波前沿陡峭,波峰尖锐,回波后沿斜率很大,当探头越过
裂纹延伸方向移动时,起波迅速,消失也迅速。
(4)钢锻件中的白点:波峰尖锐清晰,常为多头状,反射强烈,起波速度快,回波前沿陡峭,回波后沿斜率很大,在移动探头时回波位置变化迅速,此起彼伏,多处于被检件例如钢棒材的中心到1/2半径范围内,或者钢锻件厚度最大的截面的1/4~3/4中层位置,有成批出现的特点(与炉批号和热加工批有关)。当白点数量多、面积大或密集分布时,还会导致底波高度显著降低甚至消失。
(5)锻件中的非金属夹杂物:多为单个反射信号,起波较慢,回波前沿不太陡峭,波峰较圆钝,回波后沿斜率不太大并且回波占宽较大。
(7)焊缝中的未焊透:多为根部未焊透(如V型坡口单面焊时钝边未熔合)或中间未焊透(如X型坡口双面焊时钝边未熔合),一般延伸状况较直,回波规则单一,反射强,从焊缝两侧探伤都容易发现。
(8)铸件或焊缝中的夹渣:反射波较紊乱,位置无规律,移动探头时回波有变化,但波形变化相对较迟缓,反射率较低,起波速度较慢且后沿斜率不太大,回波占宽较大。
总之,在条件允许的情况下,为了进一步确认缺陷性质,还应采用其他无损检测手段,例如X射线照相(检查内部缺陷)、磁粉和渗透检验(检查表面缺陷)来辅助判断缺陷的性质。最后,由于本人知识水平有限,讲的不对的地方还请大家多多指正。
总结人:XXX
2011年8月9日
超声波工作总结
我于2005年从事超声波检测至今,在这几年的时间里检测了无数条焊缝,通过对这些焊缝的实践活动。我个人觉得焊缝的焊接质量受多种因素的影响,其中以个人因素及焊接环境因素最为重要。也因为这些因素的存在,让我们在进行超声波检测的过程中,必须以各种缺陷(未焊透、未熔合、裂纹、气孔、夹渣等)产生的回波来分析从而进行准确的判断。这也是我觉得超声检测的重点以及难点,如果对这些问题把我的不好,就会造成错判或漏判。通过对缺陷的位置产生的可能性进行分析,同事结合探头的扫差方式,才能正确的判断反射回波,从而对缺陷的性质以及位置做出正确的判断。这样做可以保证我们工作的准确性,二来能防止焊缝缺陷的漏检和误检。
在超声检测过程中,我也注意思考和总集经验,我觉得超声波探伤对缺陷的判断主要是对显示屏上的反射回波进行分析。当认定某一回波是缺陷反射波,应在不同位置进行检测,根据检测过程中的缺陷波形变化,集合缺陷位置以及焊接工艺来进行判断。探伤过程中显示屏上有很多反射回波是伪缺陷波,伪缺陷波容易导致探伤人员误判,从而造成一些不必要的损失。在所有反射回波中找出真正的缺陷波是超声探测过程中最为重要的。
在从事了这么几年的超声波探伤工作中,由于焊缝缺陷的多种多样以及自身经验问题,也常常会被很多问题困扰,导致自己难于判断或准确判断,所以在以后的超声波探伤工作中,还需要我不断的学习
理论知识,不断的思考和分析工作中出现的问题,依据标准和规范来进一步的积累经验,提高自身专业能力,从而更好的服务于工作。
2011年11月10日
超声波测距
超声波传感器用于超声控制元件,它分为发射器和接收器。发射器将电磁振荡转换为超声波向空气发射,接收器将接受的超声波进行声电转换变为电脉冲信号。实质上是一种可逆的换能器,即将电振荡的能量转换为机械振荡,形成超声波;
或者有超声波能量转换为电振荡。常用的传感器有T40-XX和R40-XX系列,UCM-40T和UCM-40R系列等;
其中T代表发射传感器,R代表接收传感器,40为中心频率40KHZ。
超声波的传播速度
纵波、横波及表面波的传播速度取决于介质的弹性常数以及介质的密度。
1.液体中的纵波声速:
C1=
k/
2.气体中的纵波声速:
C2=
P·/
式中:K——体积弹性模量
——热熔比
P——静态压力
——密度
注:气体中声速主要受温度影响,液体中声速主要受密度影响,固体中声速主要受弹性模量影响;
一般超声波在固体中传播速度最快,液体次之,气体中传播速度最慢。
超声波测距原理
通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2
这就是所谓的时间差测距法 或:
由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0.6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为:
V = 331.45 + 0.607T
声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。
超声波发生器可以分为两类:
1、使用电气方式产生超声波;
2、用机械方式产生超声波。电气方式包括压电型,磁致伸缩型和电动型等;
机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各有不同,因而用途也各有不同。目前较为常用的是压电式超声波发生器,其又可分为两类:(1)顺压电效应:某些电介物质,在沿一定方向上受到外力作用而变形时,内部会产生极化现象,同时在其表面上会产生电荷;
当外力去掉后,又从新回到不带电的状态,这种将机械能转换为电能的现象称顺压电效应(超声波接收器的工作原理)。(2)逆压电效应:在电介质的极化方向上施加电场,会产生机械变形,当去掉外加电场时,电介质的变形随之消失,这种将电能转化为机械能的现象称逆压电效应(超声波发射器的工作原理)。
系统框图
超声波发射电路 方案一
利用555定时器构成多谢振荡器产生40KHz的超声波。如下图为555定时器构成的多谢振荡器,复位端4由单片机的P0.4口控制,当单片机给低电平时,电路停振;
当单片机给高电平时电路起振。接通电源后,电容C2来不及充电,6脚电压Uc=0,则U1=1,555芯片内部的三极管VT处于截止状态。这时Vcc经过R3和R2向C2充电,当充至Uc=2/3Vcc时,输出翻转U1=0,VT导通;
这时电容C2经R2和VT放电,当降至Uc=1/3Vcc时,输出翻转U1=1.C2放电终止、又从新开始充电,周而复始,形成振荡。其振荡周期t1和放电时间t2有关,振荡周期为:
T=t1+t20.7(R3+2R2)C2
f=1/T=1/(t1+t2)1.43/(R3+2R2)C2=40KHz 有上面公式可知,555多谐振荡器的振荡频率由R2,R3,C2来确定。所以在电路设计时,先确定C2,R2的取值,即C2=3300pf,R2=2.7K。再将R2和C2的值代入上式中可得:
R3=1.43/C2·f - 2R2 为了方面在实验中使用555芯片的3脚输出40KHz的方波,在这里将其用10K的电位器代替。
为了增大U1的输出功率,将555芯片的8脚接+12v的电压,同时将其复位端4脚接高电平,使用示波器观察555芯片3脚的输出波形,通过调节电位器R3的阻值,使其输出波形的频率为40KHz。
方案二
该超声波发射电路,由F1至F3三门振荡器在F3的输出为40KHz方波,工作频率主要由C
1、R1和RP决定,用RP可调电阻来调节频率。F3的输出激励换能器T40-16的一端和反相器F4输出激励换能器T40-16(反馈耦合元件)的另一端,因此,加入F4使激励电压提高了一倍。电容C
2、C3平衡F3和F4的输出使波形稳定。电路中的反相器用CC4069六反相器中的四个反相器剩余两个不用(输入端应接地)。电源用9V叠层电池;
测量F3输出频率应为40KHz,否则应调节RP,发射波信号大于8m。
方案三
该超声波发射电路由VT
1、VT2组成正反馈振荡器。电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40KHz;
频率稳定性好,不需做任何调整,并由T40-16作为换能器发出40KHz的超声波信号;
电感L1与电容C2调谐在40KHz起作谐振作用。本电路电压较宽(3v至12v),且频率不变。电感采用固定式,电感量5.1mH,整工作电流约25mA,发射超声波信号大于8m。
方案四
该发射电路主要有四与非门电路CC4011完成谐振及驱动电路功能,通过超声波换能器T40-16辐射出超声波去控制接收器。其中门YF1和门YF2组成可控振荡器,当S按下时,振荡器起振,调整RP改变振荡器频率为40KHz;
振荡信号分别控制由YF
3、YF4组成的差相驱动器工作,当YF3输出高电平时,YF4输出低电平,当YF3输出低电时,YF4输出高电平。此电平控制T40-16换能器发出40KHz超声波。电路中YF1至YF4采用高速CMOS电路74HCOO四与门电路,该电路特点是输出驱动电流大(大于15mA),效率高等;
电路工作电压9V,工作电流大于35mA,发射超声信号大于10m。
方案五
本电路采用LM386对输出信号进行功率放大,LM386多用于音频放大,而在本电路中用于超声波发射。如图所示,LM386第1脚和第8脚之间串接的E1和R1,使电路获得较大的增益;
TO为单片机输入口的脉冲信号,经功率放大后由5脚输出,驱动探头发射超声波。
超声波接收器模块 方案一
超声波接收传感器通过压电转换的原理,将由障碍物返回的回波信号转换为电信号,由于该信号幅度较小(几到几十毫伏),因此须有低噪声放大、40kHz带通滤波电路将回波信号放大到一定幅度,使得干扰成分较小,其电路如下所示。在此电路中,为了防止在超声波接收器上始终加有一直流信号让其工作导致传感器的寿命缩短,从而加上一隔直电容C4,从而C4和R5构成滤波电路。
在电路中,放大部分采用的是高速型运放TL084。综合考虑了反相放大器、同相放大器和测量放大器的优缺点后,最终选择了同相放大电路。因为同相放大器的理想输入阻抗为无穷大,理想输出阻抗为零,其带负载能力较强等因素。在此电路中,根据同相放大器的闭环增益公式:Af=1+Rf/Rr 由于接收到的信号幅度为几到几十毫伏,所以需要将其放大400多倍使得其接收到的40KHz信号不会被干扰信号给掩盖。为了防止引起运算放大器的自激振荡,在第一级的放大电路中,R7取值为470 K,R8取值为10K,其增益放大:
Af1=1+R7/R8=48 在第二级放大电路中,R11的取值为100K,R12的取值为10K,其放大增益:
Af2=1+R11/R12=11 两级增益为:Af=Af1·Af2=528 同相放大器的平衡电阻R6和R10的取值均为10K。平衡电阻公式为:
Rp=Rf/(Rf+Rr) C5和R9构成了一阶滤波电路。
方案二
该电路主要有集成电路CX20106A和超声波换能器TCT40-10SI构成。利用CX20106A做接收电路载波频率为38KHz;
通过适当的改变C7的大小,可以改变接收电路的灵敏度和抗干扰能力。
工作原理:当超声波接收探头接收到超声波信号时,压迫压电晶体做振动,将机械能转化成电信号,由红外线检波接收集成芯片CX20106A接收到电信号后,对所接信号进行识别,若频率在38KHz至40KHz左右,则输出为低电平,否则输出为高电平。
方案三
双稳式超声波接收电路
电路中,由VT
5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号C
7、C8向双稳电路送进一个触发脉冲,VT
5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VT5截止,VT7导通,继电器K吸合•••调试时,在a点与+6V(电源)之间用导快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件 参数。
方案四
单稳式超声波接收电路
本电路超声波换能器R40-16谐振频率为40kHZ,经R40-16选频后,将40kHZ的有用信号(发射机信号)送入VT1至VT3组成的高通放大器放大,经C
5、VD1检出直流分量,控制VT4和VT5组成的电子开关带动继电器K工作。由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。可用作无线遥控摄像机快门控制、儿童玩具控制、窗帘控制等。电路中VT1β≥200,VT2≥150,其他元件自定。本电路不需要调试即可工作。如果灵敏度和抗干扰不够,可检查三极管的β值与电容C4的容量是否偏差太大。经检测,配合相应的发射机,遥控距离可达8m以上,在室内因墙壁反射,故没有方向性。电路工作电压3V,静态电流小于10mA。
方案五
在本接收电路中,结型场效应VT1构成高速入阻抗放大器,能够很快地与超声波接收器件B相匹配,可获得较高接收灵敏度及选频特性。VT1采用自给偏压方式,改变R3的阻值即可改变VT1的工作点,超声波接收器件B将接收到的超声波转换为相应的电信号,经VT1和VT2两极放大后,再经VD1和VD2进行半波整流为直流信号,由C3积分后作用于VT3的基极,使VT3由截止变为导通,其集电极输出负脉冲,触发器JK触发D,使其翻转。JK触发器Q端的电平直接驱动继电器K,使K吸合或释放;
由继电器K的触点控制电路的开关。
盲区形成的原因及处理
1、探头的余震及方向角。发射头工作完后还会继续震一会,这是物理效应,也就是余震。余震波会通过壳体和周围的空气,直接到达接收头、干扰了检测;
通常的测距设计里,发射头和接收头的距离很近,在这么短的距离里超声波的检测角度是很大的,可达180度。
2、壳体的余震。就像敲钟一样,能量仍来自发射头。发射结束后,壳体的余震会直接传导到接收头,这个时间很短,但已形成了干扰。(注:不同的环境、温度对壳体的硬度和外形会有所变化,导致余震时间会略有改变)
3、电路串扰。超声波发射时的瞬间电流很大,瞬间这么大的电流会对电源有一定影响,并干扰接收电路。
通常这三种情况情况在每次超声波发射时都会出现,即超声波在发射的时候,是一个高压脉冲,并且脉冲结束后,换能器会有一个比较长时间的余震,这些信号根据不同的换能器时间会有不同,从几百个uS到几个mS都有可能,因此在这个时间段内,声波的回波信号是没有办法跟发射信号区分的.因此,被测物体在这个范围内,回波和发射波区分不开,也就无法测距,从而形成了盲区.。
在硬件方面通常将超声波转换器之间的距离适当增大来减少盲区的范围;
如果发射探头和接收探头分开,收发不互相影响,必须要求发射电路和接收电路的地线隔离很好,发射信号不会通过地线串扰过去,否则也是不能减小盲区的。
在软件中的处理方法就是,当发射头发出脉冲后,记时器同时开始记时。我们在记时器开始记时一段时间后再开启检测回波信号,以避免余波信号的干扰。等待的时间可以为1ms左右。更精确的等待时间可以减小最小测量盲区。(注:超声波探头方向角越小、发射头和接收头位置越远,盲区就越小,测量距离也就越小)
超声波总结
自2005年从事超声波检测工作以来,我认为超声波检测的难点主要在于:焊接质量受人的因素和环境的影响很大,超声波检测时有未焊透、未熔合、裂纹、气孔和夹渣等焊接缺陷产生的回波,也可能有焊缝内成型(内凹或内凸)和错边产生的回波。有些回波信号在探伤仪示波屏上出现的位置相同或相近,有的形态又很相似,给检测工作识别带来了难度,有可能造成误判、漏判。超声波检测前应对有关被检测工件的情况(如:焊接工艺、坡口形式、钝边高度、钝边间隙等)进行了解。分析缺陷产生的可能性及其产生在焊缝中的部位,正确判断反射回波;
可以防止焊缝中缺陷的漏检、误检,同时结合探头的扫查方式观察缺陷的动态回波变化特点。
超声波探伤对缺陷的判断,主要是依赖于对示波屏上显示的反射回波的鉴别。当认定某一回波是缺陷反射波后,在不同的方向上对该缺陷进行探测,根据缺陷波形状和高度的变化,结合缺陷的位置和焊接工艺,才能对缺陷性质大小进行综合判断。而实际探伤过程当中示波屏上往往有大量回波信号,所以第一步从大量反射回波中找出真正的缺陷波是至关中要的。
然而在实际超声波探伤工作中,示波屏上除了这些缺陷信号外还同时存在着许多其它非缺陷回波信号,也就是伪缺陷波。通常探伤中所占比例要大大高于真实缺陷比例。这些伪缺陷波的存在一方面容易造成探伤者的误判,造成不必要的人力、财力浪费延误工期;
另一方面,它们也同时影响检验精度,容易造成漏检影响了检验质量,为
将来安全运行埋下隐患,所以必须把示波屏上的缺陷信号和其它非缺陷回波信号区分开来。实际探伤中,我认为一般是由探伤仪器、探头杂波、工件轮廓回波、耦合剂反射波以及其它一些波等引起的非缺陷回波信号。仔细正确的识别缺陷信号和其它非缺陷回波信号对今后超声波检测工作会有很大帮助。
以上是我从业以来对超声波检测工作的一点心得体会,工作中发现自己的专业知识和理解能力还需要继续加强。在今后的工作中,我会加强学习专业知识,对新型钢超声波检测及新标准继续学习。
崔海峰
2011年09月12日
小径管超声波探伤技术
开封空分集团有限公司--姜海
小径管指管径较小(DN100以内),管壁较薄(一般为3.5mm~8mm)的小径管。过去对这些小径管焊缝多采用射线检测,但射线探伤方法有其自身的局限性;
如裂纹、未熔合等,特别是当其与射线束方向夹角较大时,不易发现,容易漏检。而超声波探伤由于不受场地、环境限制,并且对那些面状缺陷检出率高、且价格低廉并可与其他工种进行交叉作业,可以大大提高效率而在管道探伤中得到了较好的应用,下面我结合自己的工作实践,主要对小径管探伤存在问题、探伤方法、要点及缺陷波识别等,谈谈自己的一些认识:
一 小径管对接焊缝超声波探伤存在以下问题:
1) 小径管壁薄,壁厚较薄时超声波声束在管壁中产生的声程较短,易受声压不规则的近场区干扰,给缺陷定性,定量带来困难。
2) 管壁曲率较大,管内外表面声能损失较大,声束传输路径更复杂,经过多次发散,聚集声压反射异于常规,使声能有一定量损失,降低了探伤灵敏度。
3) 焊缝焊波高度、焊瘤尺寸与管壁厚度为同一数量级,在较高灵敏度探伤时杂波多,这给缺陷的识别增加了难度。
4) 同一截面管子在壁厚上有时存在较大的公差,因而给缺陷定位带来了一定的困难。
二
小径管对接焊缝超声波探伤方法及要点:
1 小径管对接焊缝进行超声波探伤时,探头应使用高阻尼、短前沿、大K值的单晶横波探头;
晶片尺寸一般不大于6mm×6mm,前沿距离≤5mm,偏差<0.5mm,工作频率为5 MHZ。探伤中要注意如下几点:
(1) 探头耦合问题:
为保证探头与工件表面充分耦合,探头耦合面应修磨成圆弧,使其曲率半径与小径管外表面尽量一致,不同管径的小径管焊缝探伤,应配备专用的探头,避免混用。如果探伤前不认真修磨探头耦合面,而是不同外径的管子混用一个探头,其结果不但使探伤工作受到油面波、变形表面波的干扰,更重要的是随着探头的磨损,使超声场特性发生较大变化,使探伤结果变的不可信;
另外,打磨准备工作也是保证探伤顺利进行的重要环节,如飞溅物消除不彻底,会使探头与管壁耦合不好,在检查过程中出现“不起波”或“起杂波‘,必须认真去打磨探头移动区,消除飞溅物、锈斑、油垢等,以便于探头扫查。
(2) 关于探头参数的测定及复核
准确测定探头的重要参数,是超声波探伤的重要基础,如果探头参数测量不准,就会造成缺陷定位、定性的困难,甚至造成误判或漏判,在小径管探伤检验中,由于工件尺寸小,对缺陷定位更要求准确,对探头主要参数的 测定,准确性尤为重要,在探伤前,探伤人员必须认真测定探头参数,在探伤过程中,对探头主要参数和探伤灵敏度必须复核。
(3) 关于探伤灵敏度
在超声波探伤中,确定探伤灵敏度是一个关键的步骤,它将直接影响到探伤结果,在小径管焊缝探伤中同样显的极为重要。小径管探头由于晶
2 片尺寸较小,发射功率较低加上探头前沿尺寸小,加工困难相应增大,因而,探头在探伤灵敏度下杂波很多,但有时在探伤时为了便于观察,往往不适当地降低了探伤灵敏度其结果必然造成漏检,因此,做对比试块时,须选用外径、壁厚以及内外粗糙度与被探管子相同或基本相近的材料。
(4) 小径管焊缝探伤由于探头晶片尺寸较小,容易产生漏检,所以一定要在焊缝两侧探伤。
三
缺陷波的识别与判定:
1 缺陷反射波的识别
当采用一次波探伤时主要观察仪器荧光屏上一次波标记点前面出现的反射波,因为波束扫过焊缝下半部,如果有反射波一般为缺陷反射(除盲区杂波外)。其次是位于一次波最大深度标记点上(焊缝根部)的反射波,当焊缝不存在错口时,要确定反射波对应的反射点的位置,如果反射点位于焊缝中心点或探头侧则判为缺陷。当发现焊缝根部出现一定高度的反射波时、应对该处焊缝两侧的壁厚进行准确测定,仪器的扫描速度要准确调整,以准确定位,并根据探头所在的位置对反射波进行认真分析,缺陷位置出现在一次波最大深度标记点处或以前,对应的反射体位于焊缝中心或探头侧。
当采用二次波探伤时,在一次波标记点和二次波标记点之间出现的反射波,可能为缺陷波,也可能是杂波,在这个区域之前或之后出现的反射波则为非缺陷波。缺陷波可用下述方法来判断:
(1) 如果二次波声束在内壁上的转折点位于焊缝区外,反射点位于焊缝中,则该反射波可判为缺陷波。
3 (2) 二次波声束在内壁上的转折点在焊缝区内则该反射波不能作为判伤的依据应根据位置、波形等其它情况综合判断。
当从焊缝两侧探伤发现反射波,若反射波出现在焊缝的同一位置,反射波高相同或不同则反射波判为缺陷波。
2. 杂波的识别
小径管对接焊缝超声波探伤时,除了缺陷反射波外,还会有一些杂波信号,这些信号干扰了缺陷的判定,易产生误判,因此要认真分析。
(1) 缝根部成形影响:
当焊缝根部成形较好时,一般在在一次波标记点附近无反射波或反射波强度很弱,当焊缝根部成形不良如存在焊瘤、表面不规则时,从焊缝两侧探伤一般均有反射信号,其位置与根部缺陷很相似,其强度随根部成形所构成的反射条件而异,稍不注意易判为缺陷,可 用下述方法区分:
a.准确地调整扫描速度以便从声程差上比较,焊瘤反射波深度略大于一次波标记点,有必要再次强调精确测量管子壁厚。
b.用水平定位法识别:如焊瘤反射波在偏离焊缝中心线远离探头的一侧,而根部缺陷水平位置则应在焊缝中心线上或偏离焊缝中心线靠近探头一侧 。
c.通过转动探头观察波形变化也可鉴别,移动探头找到最大反射波后慢慢左右转动探头,观察波形变化,缺陷波涨落大,瞬间消失,焊瘤波升降较缓慢、平稳,同时焊瘤处除产生反射波外,多数还会产生变形纵波或变形横波,并传到焊缝加强面产生回波信号,水平位置在一,二次波标记点中间或二次波标记点附近,可用沾油的手指拍打加强面来识别。
4 (1)焊缝错边反射波:
当焊缝有错边出现时,声束和错边方位将产生反射波,其水平定位在焊缝中心,但从另一侧探伤时因无反射条件则无反射信号。
(2)扩散声束引起的加强面反射波的识别:
由于小径管壁薄,当一次波主声束后面的扩散声束经底面反射到焊缝加强面时,在加强面处产生反射波,正好出现在一,二次波标记点之间,有时易误判为焊缝中上部缺陷,可根据探头位置和水平定位或用沾油的手指拍打加强面识别,必要时,用其它检测手段做辅助检查, (1)变形波:
当声束扫查到焊缝根部时,在一定条件下将产生变形波,可根据探头位置和水平定位进行区别,一般情况下变形波水平定位点在焊缝之外。
四. 试验验证及结论
通过对不同管径,不同壁厚管子经超声波探伤和射线探伤比较,二者结果是基本吻合的,现场实际应用也证明,小径管对接超声波探伤不仅切实可行,而且也具有较强的可靠性。小径管对接超声波探伤可以克服射线探伤的缺点,但在探伤过程中一定要从焊缝两侧探伤,认真分析波形,对探头参数、仪器一定要调准。
超声医生下乡工作总结
超声医师工作总结
超声医生工作总结(共15篇)
超声科医生下乡工作总结
上一篇:工作总结及检讨
下一篇:学校工作总结新浪微博